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We solve a nonequilibrium statistical-mechanics problem exactly, namely, the single-file dynamics of N
hard-core interacting particles �the particles cannot pass each other� of size � diffusing in a one-dimensional
system of finite length L with reflecting boundaries at the ends. We obtain an exact expression for the
conditional probability density function �T�yT , t �yT,0� that a tagged particle T �T=1, . . . ,N� is at position yT at
time t given that it at time t=0 was at position yT,0. Using a Bethe ansatz we obtain the N-particle probability
density function and, by integrating out the coordinates �and averaging over initial positions� of all particles but
particle T, we arrive at an exact expression for �T�yT , t �yT,0� in terms of Jacobi polynomials or hypergeometric
functions. Going beyond previous studies, we consider the asymptotic limit of large N, maintaining L finite,
using a nonstandard asymptotic technique. We derive an exact expression for �T�yT , t �yT,0� for a tagged particle
located roughly in the middle of the system, from which we find that there are three time regimes of interest
for finite-sized systems: �A� for times much smaller than the collision time t��coll=1 / ��2D�, where �

=N /L is the particle concentration and D is the diffusion constant for each particle, the tagged particle
undergoes a normal diffusion; �B� for times much larger than the collision time t��coll but times smaller than
the equilibrium time t��eq=L2 /D, we find a single-file regime where �T�yT , t �yT,0� is a Gaussian with a
mean-square displacement scaling as t1/2; and �C� for times longer than the equilibrium time t��eq,
�T�yT , t �yT,0� approaches a polynomial-type equilibrium probability density function. Notably, only regimes
�A� and �B� are found in the previously considered infinite systems.
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I. INTRODUCTION

Recent development of single fluorophore tracking tech-
niques allows experimental studies of the motion of particles
in cellular environments with nanometer resolution �1�. The
cell interior represents a crowded environment, in which the
motion of an individual particle is strongly affected by the
presence of other particles: crowding affects, for instance,
the folding of proteins, diffusional motion �2,3�, as well as
rates of biochemical reactions �4,5�. Crowding is also impor-
tant during ribosomal translation on mRNA �6� and binding
protein diffusion along DNA �7,8�, where bound proteins are
hindered from passing each other. Furthermore, advances in
nanofluidics allow studies of geometrically constrained
nanosized particles �9,10�. The system considered in this pa-
per, the diffusion of a tagged particle immersed in a one-
dimensional bath of hard-core interacting particles—in the
literature referred to as single-file diffusion �SFD�—
represents one of the simplest systems governed by crowding
effects, but with possible applications for obstructed one-
dimensional protein diffusion along DNA molecules and
transport in nanofluidic systems.

SFD phenomena emerge in quasi-one-dimensional geom-
etries. The particle order is under these circumstances con-

served over time t, which results in interesting dynamics for
a tagged particle, quite different from what is predicted from
classical diffusion �governed by Fick’s law�. Examples found
in nature include ion or water transport through pores in
biological membranes �11�, one-dimensional hopping con-
ductivity �12�, and channeling in zeolites �13�. SFD effects
have also been studied in a number of experimental setups
such as colloidal systems and ringlike constructions �14–18�.
One of the most apparent characteristics of SFD is that the
mean-square displacement �MSD� S�t�= ��yT−yT,0�2� of a
tagged particle is in the long-time limit proportional to t1/2 in
an infinite system with a fixed particle concentration �angular
brackets denote an average over initial positions and noise
and yT and yT,0 are tagged particle positions at times t and
t=0, respectively�. Also, the conditional probability density
function �PDF� for the tagged particle position �tPDF� is
Gaussian.

The first theoretical study showing the t1/2 law of the
MSD and that the tPDF is Gaussian is in Ref. �19�. Subse-
quent studies, proving the MSD law in alternative ways, are
found in �20–23�. Simple arguments to its origin are pre-
sented in �24–26�, one of which �26� uses a simple relation-
ship between the displacement of a single particle and par-
ticle density fluctuations, with the latter known to be the
same as for independent particles �19,27�. The t1/2 law and
Gaussian behavior have, in the long-time limit, been shown
to be of general validity for identical strongly overdamped
particles interacting via any short-range potential in which
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mutual passage is forbidden �28�. A generalized central limit
theorem for tagged particle motion has also been proven
�29�. More recent work includes �30� where particles inter-
acting via a screened Coulomb potential �i.e., not perfectly
hard core� were studied numerically �see also �31��, �32�
deals with SFD in an external potential, and �33–35� address
SFD dynamics with different diffusion constants. A phenom-
enological Langevin formulation of SFD was presented in
�36�.

Although much work has been dedicated to single-file
systems, to our knowledge, very few exact results for finite
systems with finite-sized particles have been obtained. The
one exception is �37� where the PDF for N point particles
diffusing on a finite one-dimensional line was derived. How-
ever, simplified expressions for the tPDF was only consid-
ered in the thermodynamic limit �N ,L→�, where L denotes
the system length and the concentration �=N /L is kept
fixed�. In this paper, we go beyond previous studies in the
following ways: first, finite-sized particles are considered
and we show that the N-particle probability density function
�NPDF� can be written as a Bethe ansatz solution. We obtain
an exact expression for the tPDF in terms of Jacobi polyno-
mials �or hypergeometric functions�, which reduces to that in
�37� for the case of point particles. Second, we perform a
�nonstandard� large-N analysis of the tPDF, keeping the sys-
tem size L finite. The expression for �T�yT , t �yT,0� in the
many-particle limit is presented compactly in terms of modi-
fied Bessel functions. An analysis of the tPDF reveals the
existence of three dynamical regimes for a particle located
roughly in the middle of the system: �A� short times,
t��coll=1 / ��2D�, where �coll denotes the collision time and
D is the diffusion constant. In this limit the tagged particle
undergoes standard Brownian motion with a MSD S�t�� t;
�B� for intermediate times, �coll� t��eq, where �eq=L2 /D is
the equilibrium time, we get a SFD regime where S�t�
� t1/2; �C� for long times, t��eq, an equilibrium tPDF of
polynomial type is found. Notably, only regimes �A� and �B�
exist in infinite systems.

This paper has the following organization. Section II con-
tains the formulation of the problem and a mapping onto a
point-particle system. The tPDF is also formally stated in
terms of the NPDF to which governing dynamical equations
are introduced. In Sec. III, we provide the solution to the
equations of motion for the NPDF using a coordinate Bethe
ansatz. In Sec. IV the initial coordinates as well as the coor-
dinates for all particles except the tagged one are integrated
out in order to obtain an exact expression for the tPDF. Also,
asymptotic results for large N for the tPDF are derived. In
Sec. V the asymptotic large-N expression for the tPDF is
expanded for short and long times, and three different time
regimes �A�–�C� �see above� are identified. More technical
details are given in the appendixes. A brief summary of some
of our results, corroborated with Gillespie simulations
�Monte Carlo type�, can be found in �38�.

II. PROBLEM DEFINITION

In this paper we consider a system of N identical hard-
core interacting particles, each with a diffusion constant

D and a linear size �, diffusing in a finite one-dimensional
system extending from −L /2 to L /2. A schematic cartoon
is depicted in Fig. 1. The particles each have center of
mass �CM� and initial coordinates y� = �y1 , . . . ,yN� and y�0
= �y1,0 , . . . ,yN,0�, respectively. Due to the hard-core interac-
tion, the particles cannot pass each other and retain their
order at all times, i.e., yj+1�yj +� for j=1, . . . ,N−1. The
ends of the system are reflecting �the particles cannot es-
cape�, i.e., y1�−�L−�� /2 and yN	 �L−�� /2.

The diffusion of finite-sized particles can be mapped onto
a point-particle problem. Introducing the rescaled effective
system length

� = L − N� , �1�

and making the coordinate transformation

xj = yj − j� +
N + 1

2
� ,

xj,0 = yj,0 − j� +
N + 1

2
� , �2�

it leads to

R:− �/2 	 x1 	 x2 . . . 	 xN 	 �/2, �3�

where R denotes the phase space spanned by Eq. �3�. The
phase space R0 is also introduced for the initial coordinates
which satisfy −� /2	x1,0	x2,0 . . . 	xN,0	� /2. For conve-
nience, we also introduce the shorthand notations x�
= �x1 , . . . ,xN� and x�0= �x1,0 , . . . ,xN,0�. Equations �1� and �2�
map exactly the problem of N finite-sized hard-core particles
in a box of length L onto a N point-particle problem in a box
of length �.

The main quantity of interest in this study is the tPDF
�T�xT , t �xT,0� that is the probability density that a tagged par-
ticle T �T=1, . . . ,N� is at position xT at time t, given that it
was at xT,0 at t=0 �an ensemble average over the initial
�equilibrium� distribution of the surrounding N−1 particles
is implicit�. The equilibrium tPDF is straightforwardly calcu-
lated from the ergodicity principle: all points in the allowed
phase space R are equally probable. This leads the equilib-
rium NPDF

FIG. 1. �Color online� Cartoon of the problem considered here:
N particles of linear size � diffusing is a one-dimensional system of
length L. The particles have center-of-mass coordinates yj and ini-
tial positions yj,0 �j=1, . . . ,N� and are unable to overtake. This
implies that yj+1�yj +� �j=1, . . . ,N−1� for all times. Also, the
particles cannot diffuse out of the box, i.e., y1�−L /2+� /2 and
yN	L /2−� /2.
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Peq�x�� =
N!

�N 	
i=1

N−1


�xi+1 − xi� , �4�

where 
�z� is the Heaviside step function; 
�z�=1 for z�0
and zero elsewhere. Using an extended phase-space integra-
tion technique �see Appendix C� it is easy to verify that

Rdx1¯dxN Peq�x��=1. Integrating Eq. �4� over all coordi-
nates leaving out one, xT, gives the tPDF

�T
eq�xT� = �

R
dx1� ¯ dxN� ��xT − xT��Peq�x���

=
N!

�N

1

NL ! NR!
�

−�/2

xT
dx1�¯�

−�/2

xT
dxT−1�

��
xT

�/2

dxT+1� ¯�
xT

�/2

dxN�

=
1

�N

N!

NL ! NR!
��

2
+ xTNL��

2
− xTNR

, �5�

where ��z� is the Dirac delta function and NL �NR� is the
number of particles to the left �right� of the tagged particle
�N=NL+NR+1�. In the remaining part of this section, we
show how to calculate the complete time evolution of the
tPDF from the many-particle NPDF.

In order to obtain �T�xT , t �xT,0� one needs to first introduce
the N-particle joint probability density P�x� , t ;x�0�, which
gives the probability density that the system is in a state x�
and that it initially was in a state x�0. The joint probability
density for the tagged particle �T�xT , t ;xT,0� is simply ob-
tained from the joint NPDF by integration over R and R0:
�T�xT , t ;xT,0�=
Rdx1�¯dxN�
R0dx1,0� ¯dxN,0� ��xT−xT����xT,0
−xT,0� �P�x�� , t ;x�0��. Relating the conditional and joint proba-
bility densities using Bayes’ rule �39�, i.e., P�x� , t ;x�0�
=P�x� , t �x�0�Peq�x�0� and �T�xT , t ;xT,0�=�T�xT , t �xT,0��eq�xT,0�,
leads to

�T�xT,t�xT,0� =
1

�eq�xT,0��R
dx1� ¯ dxN� ��xT − xT��

��
R0

dx1,0� ¯ dxN,0� ��xT,0 − xT,0� �

�P�x��,t�x�0��Peq�x�0�� , �6�

where �T
eq�xT,0� is given in Eq. �5�.

In order to get the tPDF using Eq. �6�, we need to calcu-
late the NPDF P�x� , t �x�0�. It is governed by the diffusion
equation

�P�x�,t�x�0�
�t

= D� �2

�x1
2 +

�2

�x2
2 + ¯ +

�2

�xN
2 P�x�,t�x�0� , �7�

for x� �R �P�x� , t �x�0��0 outside R�. The equation certifying
that neighboring particles cannot overtake reads

D� �

�xi+1
−

�

�xi
P�x�,t�x�0��xi+1=xi

= 0. �8�

Also, reflecting boundaries are placed at the system ends,

D� �P�x�,t�x�0�
�x1

�
x1=−�/2

= 0, �9�

D� �P�x�,t�x�0�
�xN

�
xN=�/2

= 0, �10�

making sure that the particles are restricted to �−� /2,� /2� at
all times. Finally, the initial condition is

P�x�,0�x�0� = ��x1 − x1,0� ¯ ��xN − xN,0� . �11�

Summarizing this section, the problem of N hard-core in-
teracting particles of size � diffusing in a one-dimensional
system of a finite length L was mapped onto a point-particle
problem using relationships �1� and �2�. The dynamics of the
NPDF is governed by Eqs. �7�–�10�. Once they are solved
�topic of Sec. III�, the tPDF can be calculated via Eq. �6� �as
demonstrated in Sec. IV�.

III. NPDF AS A COORDINATE BETHE ANSATZ

In this section we obtain the NPDF for the diffusion prob-
lem defined in previous section using a coordinate Bethe
ansatz. The Bethe ansatz has been proven useful in solving a
large variety of interacting particle problems since its intro-
duction by Bethe in 1931 �see �40� for a review�. The Bethe
ansatz solution for the present problem reads

P�x�,t�x�0� = �
−�

� dk1

2
�

−�

� dk2

2
¯�

−�

� dkN

2
e−E�k1,. . .,kN�t

�� j=1
N ��kj,xj,0��eik1x1+ik2x2+ik3x3+¯+ikNxN

+ S21e
ik2x1+ik1x2+ik3x3+¯+ikNxN

+ S32S31e
ik2x1+ik3x2+k1x3+¯+ikNxN

+ all other permut. of �k1,k2, . . . ,kN�� ,

�12�

where E�k1 , . . . ,kN� is the dispersion relation, Sij are the scat-
tering coefficients, and ��kj ,xj,0� denotes a function contain-
ing boundary and initial conditions. Each one of these quan-
tities is described below.

The dispersion relation has the form

E�k1, . . . ,kn� = D�k1
2 + ¯ + kN

2 � , �13�

and relates “energy” to the momenta k1 , . . . ,kN. Equation
�13� is obtained by inserting the Bethe ansatz �12� into the
equation of motion �7�.

The scattering coefficients Sij describe pairwise particle
interactions and are in general functions of the momentum
variables ki and kj, Sij =S�ki ,kj�. They are, however, indepen-
dent of the initial positions of the particles. In Appendix A it
is demonstrated that the scattering coefficients making sure
that the particles cannot pass each other �i.e., satisfying Eq.
�8�� are given by

Sij = 1, �14�

which means that they are independent of momenta and cor-
respond to perfect reflection. For noninteracting particles
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Sij =0, which reduces the Bethe ansatz to a standard Fourier
transform.

The quantity ��kj ,xj,0� contains information about the ini-
tial and boundary conditions of the problem, which are here
defined by Eqs. �9�–�11�. The form of ��kj ,xj,0� satisfying
these relationships is given by

��kj,xj,0� = 2 cos�kj�xj,0 + �/2�� �
m=−�

�

eikj�2m+1/2��, �15�

which is shown explicitly in Appendix A. Notably, for an
infinite system we have ��kj ,xj,0�=e−ikjxj,0 �41,42�.

It is interesting to note that for SFD systems described by
Eqs. �12�–�15� any macroscopic quantity that is invariant un-
der interchange of any two particle positions, xi↔xj, takes
the same value as for a system of noninteracting particles.
This is in marked contrast to microscopic quantities such as
the tPDF which in general behave very differently for single-
file and independent particle systems. In Appendix F we use
the Bethe ansatz to explicitly calculate two macroscopic
quantities, the dynamic structure factor and the center-of-
mass PDF, and show that they agree with standard results for
independent particle systems.

Integration over momenta in Eq. �12� �using Eqs.
�13�–�15�� leads to the NPDF

P�x�,t�x�0� = ��x1,x1,0;t���x2,x2,0;t� ¯ ��xN,xN,0;t�

+ ��x1,x2,0;t���x2,x1,0;t� ¯ ��xN,xN,0;t�

+ all other permut. of �x1,0,x2,0, . . . ,xN,0� ,

�16�

where

��xi,xj,0;t� =
1

�4Dt�1/2 �
m=−�

� �exp�−
�xi − xj,0 + 2m��2

4Dt
�

+ exp�−
�xi + xj,0 + �2m + 1���2

4Dt
�� �17�

is obtained from the inverse Fourier transform

�2�−1
−�
� dkj ��kj ,xj,0�e−Dkj

2teikjxi. We point out that
��xi ,xj,0 ; t� is the single-particle PDF for a particle in con-
fined in a box of length �.

The single-particle PDF given in Eq. �17� is, however, not
convenient for analyzing the long-time limit t→�. In order
to get a more suitable expression we seek instead the eigen-
mode expansion of ��xi ,xj,0 ; t�, which can be done in a va-
riety of ways. Here, we use Bromwich integration. The
Laplace transform of Eq. �17� is �see Appendix B�

��xi,xj,0;s� = �
0

�

dt e−st��xi,xj,0;t�

=
1

�4Ds sinh���s/D�
�cosh��xi + xj,0��s/D�

+ cosh��� − �xj,0 − xi���s/D�� . �18�

The sought eigenvalue expansion is obtained as a sum of
residues of ��xi ,xj,0 ;s� �see, e.g., Ref. �43�� and reads

��xi,xj,0;t� =
1

�
�1 + �

m=1

�

Gm�xi,xj,0�Em�t�� , �19�

where

Gm�xi,xj,0� = �m
�+� cos�mxi

�
cos�mxj,0

�


+ �m
�−� sin�mxi

�
sin�mxj,0

�
 , �20�

Em�t� = e−�m�2Dt/�2
, �21�

�m
��� = 1 � �− 1�m. �22�

Elementary trigonometric identities �44� were used to bring
Gm�xi ,xj,0� onto the form in Eq. �20�. Equations �19�–�22�
agrees with well-known results �45�. The single-particle PDF
�19� is more convenient for obtaining the long-time limit as
well as for numerical computations compared to Eq. �17�.

In summary, the many-particle NPDF for excluding par-
ticles of size � diffusing in a finite interval of length L with
reflecting boundaries is given by Eqs. �16� and �19� �or Eq.
�17�� combined with the mapping equations �1� and �2�. For
point particles ��=0� these results agree with those pre-
sented in �37� where a different approach was used �46�.
Based on the explicit expression of our NPDF, we will in the
following section address the tPDF.

IV. tPDF—EXACT AND LARGE N RESULTS

In this section, we calculate the tPDF �6� by integrating
out the coordinates and initial positions of all nontagged par-
ticles from the NPDF given in Eq. �16� �47�. As is shown in
detail in Appendix C we can, due to the property that
P�x� , t �x�0� is invariant under permutations of xi↔xj, extend
the integration from R to the hypercubes xj � �−� /2,xT�
�j=1, . . . ,T−1� and xj � �xT ,� /2� �j=T+1, . . . ,N�. A similar
procedure holds for integration over R0 �initial positions�.
Using the extended phase-space technique, Eq. �6� becomes

�T�xT,t�xT,0� =
fL

NLfR
NR

NL ! NR!
�

−�/2

xT
dx1¯�

−�/2

xT
dxT−1�

xT

�/2

dxT+1¯

��
xT

�/2

dxN�
−�/2

xT,0

dx1,0¯�
−�/2

xT,0

dxT−1,0

��
xT,0

�/2

dxT+1,0¯�
xT,0

�/2

dxN,0 P�x�,t�x�0� , �23�

where

fL = ��/2 + xT,0�−1, fR = ��/2 − xT,0�−1. �24�

Using a similar combinatorial analysis to the one in Ref.
�37�, we arrive at Eq. �D1� �see Appendix D�. The tPDF is,
however, more conveniently expressed in terms of Jacobi
polynomials �44�, Pn

��,���z�. Using the identities Pn
��,���z�

= �n+�� ! �n+�� ! / �n ! �n+�+��!���z−1� /2�−aPn+�
�−�,���z� and

Pn
��,���−z�= �−1�nPn

��,���z� �48� leads to
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��xT,t�xT,0� =
�NL + NR − 1�!

NL ! NR!
��L

L�NL��R
R�NR

���NL + NR����0,0,0;��

+ NL
2 �L�L

�L
L ��1,0,0;�� + NR

2 �R�R

�R
R ��0,1,0;��

+ NLNR��R�L

�L
R +

�L�R

�R
L ���0,0,1;��� , �25�

where

��a,b,c;�� =
�NL − �a + c�� ! �NR − b�!
�NL + NR − �a + b + c��!

�c�1 − ��NL−�a+c�

�PNL−�a+c�
�c,NR−NL+a−b��1 + �

1 − �
 , �26�

� =
�R

L�L
R

�L
L�R

R , �27�

were introduced. The quantities �L, �L
L, etc. are defined in

Eq. �D3� and are integrals of the one-particle propagator �
=��xi ,xj,0 ; t� �49�. For the general case we have �� �0,1�
�50�. By using limiting results of �L

L, �R
R, �L

R, and �R
L from

Appendix E, one concludes that �→0 for short times
�t→0�, and �→1 in the long-time limit �t→��. It is also
possible using standard relations for the Jacobi polynomials
�44� to express ��a ,b ,c ;�� as a Gauss hypergeometric func-
tion 2F1�� ,� ,� ;z�,

��a,b,c;�� = 2F1�− NL + a,− NR + b,− �NL + NR� + a + b

+ c;1 − �� , �28�

which is convenient for obtaining the long-time behavior as
will be seen in the next section.

Finally, we need to find explicit expressions for the inte-
grals of ��xi ,xj,0 ; t� �Eq. �D3��. Integrating Eq. �19� �or inte-
grating ��xi ,xj,0 ;s� prior to Laplace inversion �see Appendix
E�� yields �arguments are left implicit�

�L
L =

1

2
+

xT
�

+ �1

2
+

xT,0

�
−1

�
m=1

�

KmEm�t� ,

�R
R =

1

2
−

xT
�

+ �1

2
−

xT,0

�
−1

�
m=1

�

KmEm�t� ,

�L =
1

2
+

xT
�

+ �
m=1

�

Jm�xT,xT,0�Em�t� ,

�L =
1

�
�1 + �1

2
+

xT,0

�
−1

�
m=1

�

Jm�xT,0,xT�Em�t�� ,

�R =
1

�
�1 − �1

2
−

xT,0

l
−1

�
m=1

�

Jm�xT,0,xT�Em�t�� ,

�R = 1 − �L, �L
R = 1 − �L

L, �R
L = 1 − �R

R, �29�

with

Km =
1

�m�2��m
�+� sin�mxT

�
sin�mxT,0

�


+ �m
�−� cos�mxT

�
cos�mxT,0

�
� , �30�

Jm�z,z�� =
1

m
��m

�+� sin�mz

�
cos�mz�

�


− �m
�−� cos�mz

�
sin�mz�

�
� , �31�

where Em�t� and �m
��� are given by Eqs. �21� and �22�, respec-

tively. To summarize, the complete expression for the tagged
particle PDF is given by Eqs. �25�–�27�, �29�, and �30�
together with Eqs. �1� and �2� for the case of finite-sized
particles. The expressions for �T�xT , t �xT,0� can straightfor-
wardly be computed numerically; our MATLAB implementa-
tion is available upon request.

In the remaining part of this section we derive the tagged
particle PDF �T�xT , t �xT,0� valid for a large N and �finite�
system size �. This large-N expansion will be used in the
next section for identifying different time regimes and to
obtain �T�xT , t �xT,0� for short and intermediate times. From
Eq. �26� we note that the argument in the Jacobi polynomial,
Pn

��,���z�, is in the interval z� �1,�� �since �� �0,1�� and
that the number of particles is related to the order n. A
large-N expansion of ��a ,b ,c ;�� therefore amounts to find a
large order n expansion valid for z� �1,�� �i.e., for all
times� for the Jacobi polynomial. One such expansion was
derived in �51� �see also �52,53��, and applying it to Eq. �26�
yields

��a,b,c;�� � �N − �a + b + c��1/2��2c−1�/4�2��1/2

��1 − �

4
�N−�a+b+c��/2

Ic��N − �a + b + c����

��1 + A���� , �32�

where �54�

� =
1

2
ln�1 + ��

1 − ��
� , �33�

and I��z� is the modified Bessel function of the first kind of
order �. Stirling’s formula �44� was also used to approximate
factorials involving NL and NR. The correction term appear-
ing in Eq. �32� is

A��� =
B0���

N − �a + b + c�
Ic+1��N − �a + b + c����
Ic��N − �a + b + c����

,
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B0��� =
1

2
��c2 − 1/4��1

�
− coth �

− ���N + a − b�2 − 1/4�tanh���� , �34�

where �N=NR−NL was introduced. The expression for A���
was found by explicitly evaluating an integral in Ref. �51�,
and it is a straightforward matter to show that the correction
term A��� is indeed always small for all �� �0,1� provided
that 1 /N , ��N� /N�1. Inserting Eq. �32� in Eq. �25� and us-
ing the same approximations as above, we obtain our final
large-N result for the tPDF,

�T�xT,t�xT,0� = ��L
L��N−�N−1�/2��R

R��N+�N−1�/2

��1 − ���N−1�/2� �

��
1/2��1 − ��1/2�I0�N��

+
N

2 ��L�L

�L
L +

�R�R

�R
R I0�N��

+
N

2
����R�L

�L
R +

�L�R

�R
L I1�N��� . �35�

We point out that this expression, in contrast to previous
asymptotic expressions �20,22,37�, is valid for a finite box of
size �, assuming only that the number of particles is large
N�1 and that the tagged particle is approximately in the
center of the system: ��N� /N�1.

V. THREE DIFFERENT TIME REGIMES

In this section we show that, for large N, the finite SFD
system considered here has three different time regimes to
which expressions for �T�xT , t �xT,0� are derived. Mathemati-
cally, the different cases appear due to the magnitude of N�
�found in the argument of the Bessel functions in Eq. �35��,
and if � is small or large. Utilizing Eqs. �E14� and �33�, these
cases can be turned into different time regimes if introducing
the collision time

�coll =
1

�2D
, �36�

where �=N /� is the concentration of particles, and the equi-
librium time

�eq =
�2

D
. �37�

For a particle located roughly in the middle, ��N� /N�1
�i.e., Eq. �35� applies�, the three cases are given by �A�
short times, N��1, i.e., t��coll ,�eq; �B� intermediate
times, ��1 and N��1, corresponding to �coll� t��eq; and
�C� long times, ��1, i.e., t��coll ,�eq.

Time regimes �A�–�C� are analyzed in detail below.

A. Short times, t™�coll ,�eq

For short times we have N��1 and may therefore use the
approximations I��z� �z�1��z /2�� /���+1� �44�, ����, and

��1. In this limit, one finds that the first term in Eq. �35�
dominates which in combination with Eq. �2� leads to

�T�yT,t�yT,0� = �4Dt�−1/2exp�−
�yT − yT,0�2

4Dt
� , �38�

for which the MSD is

S�t� = 2Dt . �39�

In the short-time regime, almost no collisions with the neigh-
boring particles �nor the box walls� have occurred and the
tPDF is therefore a Gaussian with width 2Dt as for a free
particle in an infinite one-dimensional system.

B. Intermediate times, �coll™ t™�eq

In the intermediate-time regime the tagged particle has
collided many times with its neighbors but not yet reached
its equilibrium tPDF. For this regime, where ��1 but N�
�1, we get the tPDF as follows. First, the first term in Eq.
�35� is neglected �this is checked at the end of the calcula-
tion�. Second, the Bessel function is approximated with
I��z� �z�1�ez /�2z. A straightforward expansion of Eq. �35�
for �L

R , �R
L �1 �i.e., ���1�, together with Stirling’s for-

mula, gives

�T�yT,t�yT,0� �
1

2
e−�N��R

L−�L
R�� N

2
��R

L�L
R�−1/4e−�N/2����R

L − ��L
R�2

���L�L + �R�R + �R�L��R
L

�L
R1/2

+ �L�R��L
R

�R
L1/2� . �40�

If we furthermore assume that the average of the absolute
value of �= �xT−xT,0� /�4Dt is small �which is checked after
the calculation�, Eq. �E15� may be used which in combina-
tion with Eqs. �1�, �2�, and �40�, keeping only lowest order
terms in �, leads to the SFD result,

�T�yT,t�yT,0� =
1

�2� 1

4Dt


�1 − ��

�
2�

1/4

�exp�−
�yT − yT,0�2

2�4Dt


�1 − ��

�
2� , �41�

where the MSD is

S�t� =
1 − ��

�
�4Dt


. �42�

Equation �42� justifies the assumption that the expectation
value of ��� is a small number. Also, comparing the magni-
tude of the first term in Eq. �35� with respect to the second
and the third shows indeed that our first assumption above
was correct �55�. For point particles �=0, Eq. �41� agrees
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with standard results �20,37�, in which N ,L→� while keep-
ing the concentration � fixed. The result above shows that
SFD behavior appears also in a finite system with reflecting
ends, as an intermediate regime �for a particle roughly in the
middle�. In addition, note that the simple rescaling �
→� / �1−��� takes us from previous point-particle results to
those of finite-sized particles.

C. Long times, tš�eq

In the long-time limit we have ��1, for which the tPDF
can be obtained exactly for arbitrary N. Using the exact ex-
pression for �T�xT , t �xT,0� found in Eqs. �25� and �28�, to-
gether with 2F1�� ,� ,� ;z=0�=1 �44� and Eq. �E7� �also us-
ing Eqs. �1� and �2�� gives

�T
eq�yT� =

1

�L − N��N

�NL + NR + 1�!
NL ! NR!

��L

2
+ yT −��1/2 +NL�NL�L

2
− yT −��1/2+NR�NR

�43�

where �T
eq�yT�=�T�yT , t→� �yT,0�. This equation agrees with

the equilibrium tPDF given in Eq. �5� �for �=0�, as it should
�56�. The results above show the consistency of our analysis
and illustrate the ergodicity of the finite SFD system. Calcu-
lating the second moment of the equilibrium tPDF, S�t
→��=Seq, gives

Seq = �1

4
NR+1�L − N�

2
2 ��1/2���2�NR + 1��

��NR + 1���NR + 5/2�
, �44�

for NL=NR where ��z� is the gamma function. For N�1 we
can simplify the expression for the equilibrium tPDF as well
as Seq. If a symmetric file is assumed, i.e., NL=NR and T
= �N+1� /2, an asymptotic expansion of �T

eq�yT� �using
Stirling’s approximation �44�� gives the Gaussian PDF

�T
eq�yT� ��2N



1

�L − N��2exp�− 2N� yT
L − N�

2� ,

�45�

from which we read off that

Seq �
�L − N��2

4N
. �46�

Equation �46� can also be found directly from a large-N ex-
pansion of Eq. �44� using Stirling’s formula and assuming
N�2NR. We point out that �T

eq�yT�→0 for N ,L→� even if
the concentration �=N /L is kept fixed. This is consistent
with the long-time limit of Eq. �41�, which indeed goes to
zero for large times. Finally, the analysis in this subsection
also gives an estimate on the time required to reach equilib-
rium, namely, t��eq.

VI. CONCLUSIONS AND OUTLOOK

In this study we have solved exactly a nonequilibrium
statistical-mechanics problem: diffusion of N hard-core inter-
acting particles of size � which are unable to pass each other

in a one-dimensional system of length L with reflecting
boundaries. In particular, we obtained an exact expression
for the probability density function �T�yT , t �yT,0� �denoted as
tPDF� that a tagged particle T is at position yT at time t given
that it at time t=0 was at position yT,0. We derived the tPDF
by first finding the N-particle probability density function
�NPDF� via the Bethe ansatz, and then integrating out the
coordinates and taking the average over the initial positions
of all particles except one. The exact expression for
�T�yT , t �yT,0� is found in Eqs. �1�, �2�, �25�, and �26� and
constitutes the main result of the paper. For a large number
of particles and for a tagged particle located roughly in the
middle of the system, an asymptotic expansion of the tPDF
was derived �see Eq. �35��. Based on this equation, we found
three time regimes of interest: �A� for short times, i.e., times
much smaller than the collision time t��coll=1 / ��2D�,
where �=N /L is the particle number concentration, the tPDF
coincides with the Gaussian probability density function that
characterizes a free particle �Eq. �38��. �B� For intermediate
times t��coll, but much smaller than the equilibrium time t
��eq=L2 /D, a subdiffusive single-file regime was found in
which the tPDF is a Gaussian with an associated MSD pro-
portional to t1/2 �Eq. �41��. �C� For times exceeding the equi-
librium time t��eq, the tPDF approaches a probability den-
sity of polynomial type �Eq. �43��.

We point out that the subdiffusive behavior for a tagged
particle in time regime �B� is of fractional Brownian motion
type �33,57,58� rather than that of continuous-time random
walks �CTRWs� characterized by heavy-tailed waiting time
densities �59–61�. For such CTRW processes the probability
density function is not a Gaussian as for the current system.
Further comparison between subdiffusion in single-file sys-
tems and that occurring in CTRW theory was pursued nu-
merically in �62�.

The Bethe ansatz is often employed in quantum mechan-
ics when many-body systems are studied �e.g., quantum spin
chains� �40,63�, and also for stochastic many-particle lattice
problems �64,65�. We hope that the theoretical analysis based
on the Bethe ansatz presented here will stimulate further
progress in the field of single-file diffusion and that of inter-
acting random walkers. For instance, it would be interesting
to see whether our analysis could be extended to derive exact
results also for particles interacting through potentials other
than hard-core type �31�, and for particles having different
diffusion constants �34�.

From the applied point of view, our exact expression for
the tPDF covers all time regimes and is straightforward to
implement for numerical computations. Therefore, we be-
lieve that our explicit formula for �T�yT , t �yT,0�, as well as the
approximate results for regimes �A�–�C�, will be useful for
experimentalists �see, for instance, �18�� seeking to extract
system parameters such as the particle size �, the system size
L, the particle’s diffusion constants �D�, and the number �NL
and NR� of particles to the left and right of the tagged par-
ticle.

We finally note that the use of fluorescently labeled
�tagged� particles is of much use for studying biological sys-
tems. The understanding of how the motion of such particles
correlates with its environment is therefore the key for grasp-
ing the behavior of such systems in a quantitative fashion.
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APPENDIX A: BETHE ANSATZ

In this section we show that the Bethe ansatz, Eq. �12�, is
a solution to the problem defined by Eqs. �7�–�11�. First, it is
demonstrated that Eq. �12� satisfies the boundary conditions
at the ends of the box. Second, we show that the requirement
that the particles are unable to pass each other is satisfied by
setting the scattering coefficients to unity. Finally, it is dem-
onstrated that Eq. �12� also satisfies the initial condition.

1. Boundary conditions at the ends of the box

In this subsection it is proven that Eq. �12� satisfies the
reflecting boundary conditions �9� and �10� at �� /2 with an
appropriate choice for ��kj ,xj,0� �Eq. �15��. The scattering
coefficients are set to Sij =1, which is proven to be correct in
the following subsection. First, we define the function

��k,z� = ��k,z�e−ik�/2 = 2 cos�k�z + �/2�� �
m=−�

�

e−2ikm�,

�A1�

which has the symmetry relation

��k,z� = ��− k,z� . �A2�

By taking the derivative of Eq. �12� with respect to x1 and
evaluating at the left boundary x1=−� /2 give

� �P�x�,t�x�0�
�x1

�
x1=−�/2

= �
−�

� dk1

2
¯�

−�

� dkN

2
e−D�k1

2+¯+kN
2 �t� j=1

N ��kj,xj,0��ik1eik1x1�eik2x2+¯+ikNxN + perm. of �k2, . . . ,kN��

+ ¯ + ikie
ikix1�eik2x2+¯+ik1xi+¯+ikNxN + perm. of �k2, . . . ,ki−1,ki+1, . . . ,kN�� + ¯ + ikNeikNx1�eik2x2+¯+ik1xN

+ perm. of �k1, . . . ,kN−1���x1=−�/2

= �
−�

� dk2

2
¯�

−�

� dkN

2
e−D�k2

2+¯+kN
2 �t� j=2

N ��kj,xj,0��
−�

� dk1

2
�ik1�e−Dk1

2t��k1,x1,0�

+ ¯ + �
−�

� dk1

2
¯�

−�

� dki−1

2
�

−�

� dki+1

2
¯�

−�

� dkN

2
e−D�k1

2+¯+ki−1
2 +ki+1

2 +¯+kN
2 �t� j=1,j�i

N ��kj,xj,0�

��
−�

� dki

2
�iki�e−Dki

2t��ki,xi,0� + ¯ + �
−�

� dk1

2
¯�

−�

� dkN−1

2
e−D�k1

2+¯kN−1
2 �t� j=1

N−1��kj,xj,0�

��
−�

� dkN

2
�ikN�e−DkN

2 t��kN,xN,0� = 0, �A3�

where 
−�
� dki kie

−Dki
2t��ki ,xi,0�=0 �odd integrand; see Eq.

�A2�� was used in the last step. Note that this calculation
does not rely on any specific form of ��kj ,xj,0�. It is only
required that the symmetry relation �A2� holds. Furthermore,
the dispersion relation E�k��=D�k1

2+ ¯+kN
2 � was also used in

the above derivation. However, it would work equally well
for any dispersion relation as long as E�k��=�iE�ki� with
E�ki�=E�−ki� is valid.

A similar analysis as just presented shows that the
Bethe ansatz solution also satisfies the reflecting condition
at +� /2 �Eq. �10��. In fact, since the Bethe ansatz is in-

variant under the coordinate transformation xi↔xj, it gives
��P�x� , t �x�0� /�xj�xj=��/2=0 for all xj.

2. Single-file condition: Particles are unable to overtake

In this subsection it is shown that the condition that the
particles are unable to pass each other �Eq. �8�� is satisfied
for scattering coefficients given by Sij =1 in the Bethe ansatz
solution �12�. We start off by expressing P�x� , t �x�0� in two
alternative ways:
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P�x�,t�x�0� = �
−�

� dk1

2
�

−�

� dk2

2
¯�

−�

� dkN

2
e−D�k1

2+¯+kN
2 �t� j=1

N ��kj,xj,0��eik1xj�eikjx1+¯+ikj−1xj−1+ikj+1xj+1+ikj+2xj+2+¯+ikNxN

+ all other permut. of �k2, . . . ,kN�� + eik2xj�eik1x1+ikjx2+¯+ikj−1xj−1+ikj+1xj+1+ikj+2xj+2+¯+ikNxN

+ all other permut. of �k1,k3, . . . ,kN�� + ¯ + eikNxj�eik1x1+¯+ikj−1xj−1+ikj+1xj+1+ikj+2xj+2+¯+ikjxN

+ all other permut. of �k1, . . . ,kN−1��� �A4�

and

P�x�,t�x�0� = �
−�

� dk1

2
�

−�

� dk2

2
¯�

−�

� dkN

2
e−D�k1

2+¯+kN
2 �t� j=1

N ��kj,xj,0��eik1xj+1�eikj+1x1+¯+ikj−1xj−1+ikjxj+ikj+2xj+2+¯+ikNxN

+ all other permut. of �k2, . . . ,kN�� + eik2xj+1�eik1x1+ikj+1x2+¯+ikj−1xj−1+ikjxj+ikj+2xj+2+¯+ikNxN

+ all other permut. of �k1,k3, . . . ,kN�� + ¯ + eikNxj+1�eik1x1+¯+ikj−1xj−1+ikjxj+ikj+2xj+2+¯+ikj+1xN

+ all other permut. of �k1, . . . ,kN−1��� . �A5�

Using the above equations one finds

�� �P�x�,t�x�0�
�xj+1

−
�P�x�,t�x�0�

�xj
�

xj+1=xj

= �
−�

� dk1

2
�

−�

� dk2

2
¯�

−�

� dkN

2
e−D�k1

2,. . .,kN
2 �t� j=1

N ��kj,xj,0�

��ik1eik1xj�eikj+1x1+¯+ikj−1xj−1+ikjxj+1+ikj+2xj+2+¯+ikNxN

− eikjx1+¯+ikj−1xj−1+ikj+1xj+1+ikj+2xj+2+¯+ikNxN + all other permut. of �k2, . . . ,kN��

+ ik2eik2xj�eik1x1+ikj+1x2+¯+ikj−1xj−1+ikjxj+1+ikj+2xj+2+¯+ikNxN

− eik1x1+ikjx2+¯+ikj−1xj−1+ikj+1xj+1+ikj+2xj+2+¯+ikNxN + all other permut. of �k1,k3, . . . ,kN��

+ ¯ + ikNeikNxj�eik1x1+¯+ikj−1xj−1+ikjxj+1+ikj+2xj+2+¯+ikj+1xN

− eik1x1+¯+ikj−1xj−1+ikj+1xj+1+ikj+2xj+2+¯+ikjxN + all other permut. of �k1, . . . ,kN−1��� = 0,

�A6�

where it was used that each parenthesis is identically zero
due to the cancellation of the 2�N−1�! terms after permuta-
tion over all allowed momenta. Note that this derivation is
independent of the choice of ��kj ,xj,0� and E�k��.

3. Initial condition

In this subsection we show that the Bethe ansatz �12�
agrees with the initial condition �11� when t→0. By defining

��x,y� = �
−�

� dkj

2
eikjx��kj,y� , �A7�

Eq. �12� reads

P�x�,t → 0�x�0� = ��x1,x1,0���x2,x2,0� ¯ ��xN,xN,0�

+ ��x1,x2,0���x2,x1,0� ¯ ��xN,xN,0�

+ all other permut. of �x1,0, . . . ,xN,0� . �A8�

Using the explicit expression for ��k ,y� found in Eq. �15�
and that ��x−z�= �2�−1
−�

� dk eik�x−z� leads to

��x,y� = �
m=−�

�

��x − y + 2m�� + ��x + y + �2m + 1��� .

�A9�

For all m�0 the � functions are nonzero for coordinates
lying outside of R and R0 where, per definition, P�x� , t �x�0�
�0 �see discussion in Sec. II�. For m=0, it is only the first �
function in the sum, ��x−y�, that contributes to the NPDF.
Furthermore, since all terms except the first one in Eq. �A8�
are zero due to the fact that P�x� , t �x�0�=0 outside R, one
obtains

P�x�,t → 0�x�0� = ��x − x0� ¯ ��xN − xN,0� �A10�

as t→0, which is the desired result.

APPENDIX B: LAPLACE TRANSFORM OF �(xi ,xj,0 ; t)

In this section it is shown explicitly how one can go from
the one-particle PDF ��xi ,xj,0 ; t� for a particle in a box
expressed in terms of Gaussians �Eq. �17��, to the eigen-
mode expansion �Eqs. �19�–�22�� used in this paper. First,
the summation in Eq. �17� is divided schematically into
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�m=−�
� fm= fm=0+�m=1

� �fm+ f−m�. Then, using the Laplace
transform L��t�−1/2e−a/�4t��=s−1/2e−a�s �a�0� �44� one
finds

��xi,xj,0;s� = Q�s� +
e−�xi+xj,0+���s/D

�4Ds

+ � e−�xi−xj,0��s/D + �e�xi−xj,0��s/D�
�4Ds

+
e−�xi+xj,0+���s/D + e�xi+xj,0+���s/D

�4Ds
��

m=1

�

e−2m��s/D,

�B1�

where

Q�s� = ��4Ds�−1/2e−�xi−xj,0��s/D, xi � xj,0

�4Ds�−1/2e−�xj,0−xi��s/D, xi � xj,0.
� �B2�

Considering the cases xi�xj,0 and xi	xj,0 separately, and
that �m=1

� e−2m��s/D= �e2��s/D−1�−1, leads to

��xi,xj,0;s� =
1

�sD sinh���s/D�
�cosh���/2 + xi��s/D�cosh���/2 − xj,0��s/D� , xi � xj0

cosh���/2 − xi��s/D�cosh���/2 + xj,0��s/D� , xi � xj,0,
� �B3�

which after elementary trigonometric manipulations result in
Eq. �18�.

APPENDIX C: EXTENDED PHASE-SPACE
INTEGRATION

When the tPDF is integrated out from the NPDF we need
to resolve the following type of integral:

I�xT� = �
R\xT

dx1� ¯ dxT−1� dxT+1� ¯ dxN� P�x��,t�x�0� �C1�

over the region R �Eq. �3�� with the tagged particle coordi-
nate xT left out. As pointed previously in the paper, the Bethe
ansatz solution �Eq. �12�� is symmetric under the transforma-
tion xi↔xj when all scattering coefficients are given by Sij
=1. This allows the integration of P�x� , t �x�0� in Eq. �C1� to be
extended to the whole hyperspace xj � �−� /2,xT� , j
=1, . . . ,T−1 and xj � �xT ,� /2� , j=T+1, . . . ,N. This is most
easily demonstrated in an example which then is extended to
the general situation. Consider the case of three particles
where particle 3 is tagged T=3,

I�x3� = �
−�/2	x1	x2	x3	�/2

dx1dx2 P�x1,x2,x3,t�x�0� .

�C2�

The integration area in the �x1 ,x2� plane is sketched in Fig. 2
�upper dark triangle�. Since P�x� , t �x�0� is invariant under
x1↔x2, integration over the lower triangle gives the same
result, i.e.,

I�x3� = �
−�/2	x2	x1	x3	�/2

dx1dx2 P�x1,x2,x3,t�x�0� .

�C3�

If Eqs. �C2� and �C3� are added, I�x3� can be expressed as an
integral over the full rectangle

I�x3� =
1

2
�

−�/2

xT
dx1�

−�/2

xT
dx2 P�x1,x2,x3,t�x�0� . �C4�

For the general case, the integration can be extended for any
particle number to the left of the tagged particle. This means
that it is possible to go from integration over the phase space
−� /2	x1	 . . . 	xT−1	xT to −� /2	xj 	xT for j=1, . . . ,T
−1 provided that we divide by NL!. This holds also for NR
particles to the right and Eq. �C1� can in general be written
as

1x

x2

x1 2x=

x

1x > x2

x1 < 2

FIG. 2. Integration area �the darker upper area, x1	x2� for the
integral defined in Eq. �C2�. For any function which is symmetric
under x1↔x2 the integration over the lower triangle �x1�x2� yields
the same result as integration over the same function over the upper
triangle �x1	x2�. One may therefore extend the integration area to
the full rectangle above provided one divides the corresponding
result by 2.
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I�xT� =
1

NL ! NR!
�

−�/2

xT
dx1�

−�/2

xT
dx2¯

��
−�/2

xT
dxT−1�

xT

�/2

dxT+1¯�
xT

�/2

dxN P�x�,t�x�0� .

�C5�

Since P�x� , t �x�0� is also invariant under xi,0↔xj,0, a similar

extended phase-space technique is valid for integrations over
the initial particle positions R0.

APPENDIX D: FROM THE NPDF TO THE tPDF

In this appendix the tPDF is obtained from integral �6�
using the Bethe ansatz NPDF �16� explicitly. A similar com-
binatorial analysis to that found in �37� gives

��xT,t�xT,0� =
1

NL ! NR!� �
q=0

min�NL,NR�

H0�q���L
L�NL−q��R

L�q���L
R�q��R

R�NR−q + �
q=0

min�NL−1,NR�

HL
L�q���L

L�NL−q−1��R
L�q�L�L��L

R�q��R
R�NR−q

+ �
q=0

min�NL,NR−1�

HR
R�q���L

L�NL−q��R
L�q�R�R��L

R�q��R
R�NR−q−1 + �

q=0

min�NL−1,NR−1�

HL
R�q�

���L
L�NL−q−1��R

L�q+1�R�L��L
R�q��R

R�NR−q−1 + �
q=0

min�NL−1,NR−1�

HR
L�q���L

L�NL−q−1��R
L�q�L�R��L

R�q+1��R
R�NR−q−1� , �D1�

with the combinatorial factors

H0�q� = �NL

q
�NR

q
NL ! NR ! ,

HL
L�q� = �NL − 1

q
�NR

q
NL ! NR ! NL,

HR
R�q� = �NL

q
�NR − 1

q
NL ! NR ! NR,

HL
R�q� = �NL − 1

q
� NR

q + 1
NL ! NR ! NL,

HR
L�q� = � NL

q + 1
�NR − 1

q
NL ! NR ! NR, �D2�

and integrals �leaving arguments xT,0 and xT implicit�

�L
L�t� = fL�

−�/2

xT
dxi�

−�/2

xT,0

dxj,0 ��xi,xj,0;t� ,

�R
R�t� = fR�

xT

�/2

dxi�
xT,0

�/2

dxj,0 ��xi,xj,0;t� ,

�L
R�t� = fL�

xT

�/2

dxi�
−�/2

xT,0

dxj,0 ��xi,xj,0;t� ,

�R
L�t� = fR�

−�/2

xT
dxi�

xT,0

�/2

dxj,0 ��xi,xj,0;t�

�L�t� = �
−�/2

xT
dxi ��xi,xj,0;t� ,

�R�t� = �
xT

�/2

dxi ��xi,xj,0,t� ,

�L�t� = fL�
−�/2

xT,0

dxj,0 ��xj,xj,0;t� ,

�R�t� = fR�
xT,0

�/2

dxj,0 ��xj,xj,0;t� . �D3�

The prefactors fL and fR are found in Eq. �24� and corre-
spond to uniform distributions to the left and right of the
tagged particle according to which the surrounding particles
are initially placed. They appear when integrals over initial
coordinates are performed. Also, it is easy to see from nor-
malization that �L�t�+�R�t�=1, �L

L�t�+�L
R�t�=1, and �R

R�t�
+�R

L�t�=1.
If considering a single particle in a box of length �, the

integrals defined in Eq. �D3� are easily interpreted as fol-
lows. First, �L

L ��R
R� is the probability that a single particle is

to the left �right� of xT at time t given that it started, with an
equal probability, anywhere to the left �right� of xT,0. Similar
interpretations hold also for �L

R and �R
L. The quantity �L ��R�

is the probability that a single particle is at position xT given
that the particle started somewhere to the left �right� of xT,0.
Finally, �L ��R� is the probability that a single particle is to
the left �right� of xT at time t given that it started at position
xT,0.
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APPENDIX E: INTEGRALS OF �(xi ,xj,0 ;s)
IN LAPLACE SPACE

In this appendix, exact expressions as well as limiting
forms for the integrals appearing in Eq. �D3� are given in the

Laplace domain. Using the Laplace-transformed one-particle
PDF ��xi ,xj,0 ;s� found in Eq. �B3�, the integrals defined in
Eq. �D3� �with time t replaced with Laplace variable s, and
xT and xT,0 left out� are given by

�L�s� =
1

s sinh���s/D�
�sinh���/2 + xT��s/D�cosh���/2 − xT,0��s/D� , xT � xT,0

sinh���s/D� − sinh���/2 − xT��s/D�cosh���/2 + xT,0��s/D� , xT � xT,0,
� �E1�

�L�s� =
fL

s sinh���s/D�
�sinh���s/D� − cosh���/2 + xT��s/D�sinh���/2 − xT,0��s/D� , xT � xT,0

cosh���/2 − xT��s/D�sinh���/2 + xT,0��s/D� , xT � xT,0,
� �E2�

�R�s� =
fR

s sinh���s/D�
�cosh���/2 + xT��s/D�sinh���/2 − xT,0��s/D� , xT � xT,0

sinh���s/D� − cosh���/2 − xT��s/D�sinh���/2 + xT,0��s/D� , xT � xT,0,
� �E3�

�L
L�s� =

1

s sinh���s/D���1 − �xT,0 − xT�fL�sinh���s/D� − fL�D

s
sinh���/2 + xT��s/D�sinh���/2 − xT,0��s/D� , xT � xT,0

sinh���s/D� − fL�D

s
sinh���/2 − xT��s/D�sinh���/2 + xT,0��s/D� , xT � xT,0,�

�E4�

�R
R�s� =

1

s sinh���s/D��sinh���s/D� − fR�D

s
sinh���/2 + xT��s/D�sinh���/2 − xT,0��s/D� , xT � xT,0

�1 − �xT − xT,0�fR�sinh���s/D� − fR�D

s
sinh���/2 − xT��s/D�sinh���/2 + xT,0��s/D� , xT � xT,0.�

�E5�

The remaining three integrals follow from the normalization
conditions �arguments are left implicit�

�L + �R =
1

s
, �L

L + �L
R =

1

s
, �R

R + �R
L =

1

s
. �E6�

The Laplace inversion of the above relationships, using, e.g.,
residue calculus �43�, gives Eq. �29�. In the following sub-
sections we give asymptotic results in the �1� long- and �2�
short-time limits for the expressions above.

1. Long-time behavior

The long-time behavior of Eqs. �E1�–�E16� is obtained
from a series expansion for ��s /D�1 and reads �arguments
are left implicit�

� = �L = �R =
1

s�
, �L = �L

L = �R
L =

1

s
�1

2
+

xT
�
 ,

�R = �R
R = �L

R =
1

s
�1

2
−

xT
�
 . �E7�

The inverse transforms are found from L−1�s−1�=1 �44�.

2. Short-time behavior

Short times is defined here as
���xT��s /D , ���xT,0��s /D�1, i.e., times shorter than the
time it takes to diffuse across the entire box. The short-time
behavior of Eqs. �E1�–�E16� is given by
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�L�s� � �
1

2s
e−�xT,0−xT��s/D, xT � xT,0

1

s
�1 −

1

2
e−�xT−xT,0��s/D , xT � xT,0,� �E8�

�L�s� � �
fL

s
�1 −

1

2
e−�xT,0−xT��s/D , xT � xT,0

fL

2s
e−�xT−xT,0��s/D, xT � xT,0,� �E9�

�R�s� � �
fR

2s
e−�xT,0−xT��s/D, xT � xT,0

fR

s
�1 −

1

2
e−�xT−xT,0��s/D , xT � xT,0,� �E10�

�L
L�s� � �

1

s
�1 − �xT,0 − xT�fL −

fL

2
�D

s
e−�xT,0−xT��s/D , xT � xT,0

1

s
�1 −

fL

2
�D

s
e−�xT−xT,0��s/D , xT � xT,0,� �E11�

�R
R�s� � �

1

s
�1 −

fR

2
�D

s
e−�xT,0−xT��s/D , xT � xT,0

1

s
�1 − �xT − xT,0�fR −

fR

2
�D

s
e−�xT−xT,0��s/D , xT � xT,0.� �E12�

The remaining integrals follow from Eq. �E16�.
Equations �E9�–�E12� can be inverted exactly into time

domain. Using standard formulas �44� and introducing

� =
xT − xT,0

�4Dt
, �E13�

it leads to

�L�t� =
fL

2
�1 − erf ��, �R�t� =

fR

2
�1 + erf �� ,

�L�t� =
1

2
�1 + erf ��, �R�t� =

1

2
�1 − erf �� ,

�L
L�t� = 1 −

fL

2
�4Dt


�e−�2

+ ���erf � − 1�� ,

�R
R�t� = 1 −

fR

2
�4Dt


�e−�2

+ ���erf � + 1�� , �E14�

where erf z is the error function �44�. The expressions above
are valid for times such that 4Dt / �� /2�xT,0�2�1 and
4Dt / �� /2�xT�2�1. Expanding the result in Eq. �E14� for
small � and using the normalization conditions �E6� yield

�L�t� =
fL

2 �1 −
2�

�
, �R�t� =

fR

2 �1 +
2�

�
 ,

�L�t� =
1

2�1 +
2�

�
, �R�t� =

1

2�1 −
2�

�
 ,

�L
R�t� =

fL

2
�4Dt


�1 − ��� ,

�R
L�t� =

fR

2
�4Dt


�1 + ��� , �E15�

and �arguments are left implicit�

�L + �R = 1, �L
L + �L

R = 1, �R
R + �R

L = 1. �E16�

The limit where t→0 limit �s→�� is most conveniently
found from Eqs. �E1�–�E16� which, in combination with
L−1�s−1�=1, read

�L�t → 0� = �0, xT � xT,0

1, xT � xT,0,
� �E17�

�L�t → 0� = � fL, xT � xT,0

0, xT � xT,0,
� �E18�
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�R�t → 0� = � 0, xT � xT,0

fR, xT � xT,0,
� �E19�

�L
L�t → 0� = �1 − �xT,0 − xT�fL, xT � xT,0

1, xT � xT,0,
� �E20�

�R
R�t → 0� = �1, xT � xT,0

1 − �xT − xT,0�fR, xT � xT,0,
� �E21�

Again, the remaining integrals follow from the normalization
condition �E16�.

APPENDIX F: MACROSCOPIC DYNAMICS—THE
DYNAMIC STRUCTURE FACTOR AND

CENTER-OF-MASS MOTION

Macroscopic quantities for a single-file system are the
same as for a system consisting of noninteracting particles
�19,27�. By “macroscopic” we here refer to any quantity
which is invariant under xi→xj, i.e., any one which does not
“notice” if two particles are interchanged in the system. In
this appendix we explicitly evaluate two such macroscopic
quantities: �1� the dynamic structure factor and �2� the PDF
for the center-of-mass coordinate. We demonstrate that in-
deed they agree with known results for noninteracting sys-
tems.

1. Dynamic structure factor

The dynamic structure factor is tractable via scattering
experiments �see, e.g., Ref. �66�� and is widely used in
condensed-matter physics and crystallography. Considering a
set of noise-driven stochastic trajectories X1�t� , . . . ,XN�t�, the
dynamic structure factor is �67�

S�Q,t� =
1

N
�
i,j

�eiQ�Xi�t�−Xj,0�� , �F1�

where the angular brackets denote an average over different
realizations of the noise. In terms of the NPDF and the equi-
librium NPDF �see Sec. II�, it is given by

S�Q,t� =
1

N
�

R
dx1 ¯ dxN�

R0

dx1,0 ¯ dxN,0

��
i,j

eiQ�xi−xj,0�P�x�,t�x�0�Peq�x�0� , �F2�

where we averaged over the �equilibrium� initial positions.
Since the integrand above is invariant under xi↔xj, we can
apply the technique explained in Appendix C to extend the
integrations over coordinates as well as initial positions to
�−� /2,� /2�, which leads to

S�Q,t� =
1

N

1

N!

1

�N�
−�/2

�/2

dx1�
−�/2

�/2

dx2¯�
−�/2

�/2

dxN�
−�/2

�/2

dx1,0

��
−�/2

�/2

dx2,0¯�
−�/2

�/2

dxN,0�
i,j

eiQ�xi−xj,0�P�x�,t�x�0� ,

�F3�

where also Eq. �4� was used. Inserting explicitly the NPDF
from Eq. �16� yields

S�Q,t� =
1

N

1

N!

1

�N�
−�/2

�/2

dx1�
−�/2

�/2

dx2¯�
−�/2

�/2

dxN�
−�/2

�/2

dx1,0

��
−�/2

�/2

dx2,0¯�
−�/2

�/2

dxN,0���
i=1

N

eiQ�xi−xi,0�

+ �
i,j,i�j

eiQ�xi−xj,0�
���x1,x1,0;t���x2,x2,0;t� ¯ ��xN,xN,0;t�

+ remaining N ! − 1 terms� . �F4�

Defining

C�Q� =
1

�
�

−�/2

�/2

dxi�
−�/2

�/2

dxj,0 ��xi,xj,0;t�eiQ�xi−xj,0�,

F�Q� =
1

�2�
−�/2

�/2

dxi�
−�/2

�/2

dxj,0�
−�/2

�/2

dxk�
−�/2

�/2

dxl,0

���xi,xj,0;t���xk,xl,0;t�eiQ�xi−xl,0�, �F5�

and noticing that all the N! terms corresponding to permuta-
tions of the initial particle positions in Eq. �F4� give the same
contribution lead to

S�Q,t� = C�Q�C�0�N−1 + �N − 1�F�Q�C�0�N−2. �F6�

This result is identical to that of noninteracting particles
�obtained, e.g., by putting, Sij �0, in the Bethe ansatz �12�
and allowing the particles to be in the full phase space xj
� �−� /2,� /2��. The expression above is simplified by notic-
ing that C�0�=1 due to the normalization of ��xi ,xj,0 ; t�.

As an example, we consider the case �→� and �=0
where ��xi ,xj,0 ; t�= �4Dt�−1/2exp�−�xi−xj,0�2 / �4Dt�� can be
used. A straightforward calculation of Eq. �F5� for this case
gives

C�Q� = e−DQ2t, �F7�

F�Q� =
2

�
��Q�e−DQ2t, �F8�

where ��z�= �2�−1
−�
� d� ei�z was used. Inserting the results

above into Eq. �F6� gives
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S�Q,t� = e−DQ2t, Q � 0, �F9�

which is in agreement with standard results for noninteract-
ing particles in one dimension �see, e.g., Ref. �68��.

2. Center-of-mass dynamics

The probability density function for the CM coordinate X
is given by �69�

P�X,t�x�0� = �
R

dx1dx2 ¯ dxN

���X −
x1 + x2 + ¯ + xN

N
P�x�,t�x�0� ,

�F10�

where the NPDF P�x� , t �x�0� is given in Eq. �12�, and the
integration region R is defined in Eq. �3�. Since the inte-
grand is invariant under xi↔xj, it is possible to extend the
integration region to xj � �−� /2,� /2� �provided we divide by
N!�, as was done in the previous subsection. Also, using the
integral representation of the � function from previous sub-
section, Eq. �F10� can be rewritten as

P�X,t�x�0� =
1

N!
�

−�

� dQ

2
�

−�/2

�/2

dx1¯�
−�/2

�/2

dxN

�exp�iQ�X −
x1 + x2 + ¯ + xN

N
�P�x�,t�x�0� .

�F11�

Combining this equation with Eqs. �12� and �13� and defin-
ing g�kj ,Q�=
−�/2

�/2 dxi eixi�kj−Q/N� give

P�X,t�x�0� = �
−�

� dQ

2
eiQX�

−�

� dk1

2
¯�

−�

� dkN

2
e−D�k1

2+¯+kN
2 �t

���k1,x1,0� ¯ ��kN,xN,0�g�k1,Q� ¯ g�kN,Q� .

�F12�

Integrating over kj leads to

P�X,t�x�0� = �
−�

� dQ

2
eiQXh�Q,x1,0� ¯ h�Q,xN,0� , �F13�

where

h�Q,xj0� = �
−�

� dkj

2
e−Dkj

2t��kj,xj0�g�kj,Q�

= �
−�/2

�/2

dxi�
−�

� dkj

2
e−Dkj

2t��kj,xj,0�eixi�kj−Q/N�.

�F14�

The result in Eq. �F13� is identical to that of noninteracting
particles, as can be shown straightforwardly by setting Sij
�0 in Eq. �12� and not restricting the particles to the phase-
space region R.

As an example, Eq. �F13� is evaluated for an infinite sys-
tem ��→�� and �=0, where ��kj ,xj,0�=e−ikjxj,0. For this
case Eq. �F14� becomes

h�Q,xj,0� = exp�−
Q2Dt

N2 −
ixj,0Q

N
 , �F15�

which when inserted in Eq. �F13� and integrated over Q
gives the well-known Gaussian for the CM,

P�X,t�x�0� =
1

�4DCMt�1/2exp�−
�X − XCM

0 �2

4DCMt
� , �F16�

where XCM
0 = ��i=1

N xi,0� /N and DCM =D /N denote the CM ini-
tial position and the diffusion constant, respectively.
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